
Networking year: 1.2
Semih Can Karakoc (695258)

*Our group exists of five people:

Semih, Marvin, Ferhat, Thom and Vince

Table of Contents
Week 1 – Configuring Raspberry Pi .. 3

Week 2 - Webserver installation and configuration ... 4

Week 3 - DNS configuration ... 5

Week 4 - DHCP configuration ... 11

Week 5/6 – Routing.. 13

Week 7 – Final Exam .. 15

Week 1 – Configuring Raspberry Pi
In week 1 we flashed/configured our new Raspberry Pi (with SSH enabled). I initially connected via

PuTTY with SSH connection and enabled VNC in the Raspberry Pi settings (RasPi-config), then I

installed VNC viewer on my laptop and connected via VNC to the Pi. VNC is like PuTTY, but with an

user interface, which I found better to use. I actually own two Pi’s, but the figure below represents

the Pi we got from school (proof of SSH and Raspberry Pi working in VNC):

Week 2 - Webserver installation and configuration
In week 2 we tried to setup Nginx on our Raspberry Pi’s. After we were done installing Nginx by using

the command “sudo apt install nginx”, it successfully worked! We also changed the HTML

source code by accessing “/var/www/html/index.nginx-debian.html” directory.

The Nginx site is accessible by typing in your (static) IP-address (192.168.1.1) into the search bar of

Chromium (or any other internet browser). If everything is setup correctly you will see “welcome to

nginx!”, or something else, whether the HTML has been changed or not.

Another option is to use the command “curl”, which shows the source code of the URL you’ve typed

in. It can be used like this: “curl 169.254.30.72”, or for in the screenshot below that I took it

looks like: “curl 192.168.1.1”.

See photo’s below for proof that it worked (a different IP-address than week 1 though):

In the screenshot below you can see that it also works by typing in the IP-address into the search bar:

In week 2 we also had to setup “laptop1-RaspPi1-RaspPi2-laptop2” network. See figure below for a

better imagination:

We managed to do this in week 2 in the lesson, but I didn’t take screenshots, so I didn’t have proof.

Anyway, I am lucky enough that I have two Pi’s, so I remade this network at home.

In this case the nginx server had a static IP-address of 192.168.1.1 (pisemih@brooodjepi) and the

browser was 192.168.1.2 (semihpi@broodpi3b). See screenshot below for proof that the browser

could see the nginx website and that it actually worked:

See screenshot below for proof that 192.168.1.2 (browser) could see the nginx HTML code via curl.

The screenshot also has proof that brooodjepi has an IP-address of 192.168.1.1:

See screenshot below for proof that the nginx server (192.168.1.1) was able to see the browser

(192.168.1.2) and proof that the nginx server was able to see its own HTML source code via curl:

Week 3 - DNS configuration
In week 3 we had to co-operate in groups of two. One Pi had to be the DNS server and the other Pi

had to be the nginx. The DNS server should give a domain to the nginx IP-address. In week 3 in the

lesson we used “DNSmasq” to setup a DNS server, but in week 5/6 we found out that we couldn’t use

DNSmasq for this project. Instead, we had to use BIND9.

Again, I was lucky that I had two Pi’s, so I remade this network at home:

I used my new Pi4 as the DNS server. I installed BIND9 with the following command: “sudo apt-

get install bind9 bind9utils dnsutils”. Now that I have BIND9 installed, I tried to

configure the settings and zones for my network with help from the syllabus. Unfortunately the code

from the syllabus didn’t really work, so I researched like two full days how to configure BIND9. I

followed a YouTube video on internet about how to setup BIND9 and it worked eventually.

Anyway, I had to open the configuration file: “sudo nano /etc/bind/named.local.conf”.

In this file you can add/delete zones. There are two zones: forward lookup and reverse lookup. The

forward lookup is mostly important, because the server looks for the domain name and in the zone

file it tells the server which IP-address the domain name has. The inverse zone is needed for inverse

queries. I used 192.168.1.1 as static IP for the DNS server and nginx server had 192.168.1.2 as IP-

address.

My “named.conf.local” file looks like this:
zone “semih.nl” IN {

 type master;

 file “/etc/bind/db.semih.nl”;

};

zone “1.168.192.in-addr.arpa” {

 type master;

 file “/etc/bind/db.rev.1.168.192.in-addr.arpa”;

};

My “db.semih.nl” file looks like this:
$TTL 1H

semih.nl. IN SOA ns1.semih.nl. admin.semih.nl. (

 2017081401 ; Serial

 2H ; Refresh

 1H ; Retry

 1W ; Expire

 1D ; Negative Cache TTL

)

 IN NS ns1.semih.nl.

ns1 IN A 192.168.1.2

www IN A 192.168.1.2

admin IN A 192.168.1.2

My “db.rev.1.168.192.in-addr.arpa” file looks like this:
$TTL 1H

@ IN SOA ns1.semih.nl. admin.semih.nl. (

 2017081401 ; serial

 2H ; refresh

 1H ; retry

 1W ; expire

 1D ; minimum

)

 IN NS ns1.semih.nl.

2017081401 IN PTR www.semih.nl.

You can restart BIND9 service and you can also see the status of BIND9 service by using this
command: “sudo service bind9 restart” or “sudo service bind9 status“. I also

used the package “DiG” to be sure that everything is working correctly.

See screenshot below for proof that the BIND9 service was working correctly:

In the screenshot below you can see that I used curl on my domain name to see if it works, and it

does!

Here the same screenshot, but then from the semihpi Raspberry Pi:

See screenshot below for proof that DiG also works, just like curl, but with more detail:

See screenshot below for proof that DiG worked, but then from pisemih (DNS server) perspective:

See the screenshots below for proof that both Pi’s were able to access www.semih.nl via browser:

Week 4 - DHCP configuration
In week 4 we made a DHCP server with a DHCP client network, see figure below:

My Raspberry Pi (brooodjepi) was in this case the DHCP client, and Ferhat his Pi (called pino) was the

DHCP server. He used “sudo apt-get install udhcpd” to install the DHCP server. Ferhat

configured his server by doing “sudo nano /etc/udhcpd.conf”.

Here he put the following code:

start 12.0.0.3

end 12.0.0.254

interface eth0

option dns 2.0.0.10

option subnet 255.255.255.0

#option router 12.0.0.2

option domain local

option lease 864000 # 10 days in seconds

static_lease 00:e0:4c:68:68:ba 12.0.0.10

Start means the starting IP lease range, and end is the end of the IP lease range. In this case the

range is from 12.0.0.3 to 12.0.0.254 (251 options). In our network the router had a static-IP, which

was 12.0.0.2. My Pi (DNS server) had to lease an IP from the DHCP server and it had to be a lease to

work. So we added “static_lease 00:e0:4c:68:68:ba 12.0.0.12” to the file, as you

can see. This means when there is a device (in this case my Pi) with that MAC address, it should lease

12.0.0.10 to that device.

With “sudo nano /etc/default/udchpd” you need to enable the DHCP sever, search in that

file for DHCPD_ENABLED="no" and set “no” to “yes”. We also had to be sure that the laptops their

internet sharing was turned off. Otherwise the laptop will give an IP-address to the Raspberry Pi!

See screenshots below: proof that his DHCP server worked (he did this at home with other IP’s):

See the screenshot below for proof that the DNS server actually got the leased IP-address from the

DHCP server:

Week 5/6 – Routing
In this week we had to setup two subnetworks with one Raspberry Pi each and one router between

those subnets, see figure below:

Setting up the router wasn’t that difficult to do, in my opinion. We had to turn on IP-forwarding for

the router Pi. We did this by going to the sysctl.conf file: “sudo nano /etc/sysctl.conf”.

Scroll down until you find "#net.IPv4.IP_forward=1”, delete the #, so it becomes an

uncommented line. Now we have turned on IP forwarding. Run “sysctl -p” to affect changes direct.

The only thing that we need to do is to configure a gateway for the router and client(s). Go to the

dhcpcd.conf file and scroll to the bottom. Add the following lines (eth0=subnet1 and eth1=subnet2):

interface eth0

static IP_address=10.0.0.2

interface eth1

static IP_address=12.0.0.2

All individual clients on each subnet needs to configure their default gateway to communicate with

the router, here is an example for a client from subnet 2 (in their dhcpcd.conf):

interface eth1

static routers=12.0.0.2

The router and clients are now setup correctly and should work. See screenshot below for proof that

the router works (12.0.0.10 = pisemih@brooodjepi and 10.0.0.41 = pi@marvinPi):

Week 7 – Final Exam
In this week we had to build the following network:

Let's start with the screenshots of the nginx server (pi@raspberrypi - 10.0.0.30). Screenshot below

proves that pi@raspberrypi is the nginx server (from subnet 10.0.0.0):

Another screenshot of the nginx site and DNS working (10.0.0.30, with DNS enabled though).

Screenshot: DHCP server of subnet 10.0.0.0 (pi@marvinPi – 10.0.0.41) giving nginx server a leased IP-

address (10.0.0.30).

Marvin has also captured another screenshot with proof that he was able to ping Ferhat his Pi from

another subnet (so a ping from 10.0.0.41 to 12.0.0.5):

Now it’s time the router, which was my older Raspberry Pi (broodpi3b). Thom van der Veen used my

older Pi in our network, because I already had it configurated for him (IP’s: 10.0.0.2 and 12.0.0.2):

In this screenshot (above) you see different IP-addresses, I’ll give a list of who is who:

1. 12.0.0.10 is me (Semih), the DNS server (pisemih@brooodjepi).

2. 12.0.0.5 is Ferat, the DHCP server on subnet 12.0.0.0 (pi@pino)

3. 10.0.0.50 is Thom his Raspberry Pi(, which had no function in our network, he used it for

testing purposes).

4. 10.0.0.41 is Marvin, the DHCP server on subnet 10.0.0.0 (pi@marvinPi).

5. 10.0.0.30 is Vince, the nginx server (pi@raspberrypi).

6. 10.0.0.17 is also Thom, but with his other Raspberry Pi (no function, was just a DHCP server

test).

7. 10.0.0.2 and 12.0.0.2, which you cannot see in this ARP list, because it is the router itself. I

just wanted to mention the router too (semihpi@broodpi3b).

See screenshot below of dhcpcd.conf file, screenshot of configuration of router (gateways):

Now time for the DHCP server of subnet 12.0.0.0, which was Ferat (12.0.0.5 – pi@pino).

See screenshot below of proof that udhcpd DHCP server is successfully working and giving a leased

IP-address to the DNS server (12.0.0.10):

Lastly proof for the DNS server (12.0.0.10 – pisemih@brooodjepi).

Proof that DNS server works (with name server lookup):

Proof that I was able to in see our own whole subnet (12.0.0.0/24) with the package called “nmap”:

Proof that I was able to see everyone in the other subnet (10 .0.0.0/24):

Proof that BIND9 was running perfectly:

The settings of the DHCP and DNS servers are all explained in the weeks that we had to configure

them, so week 3 and week 4. The only difference is that we had more clients and other IP-addresses.

Lastly I also have a screenshot of using Wireshark, because we had an issue that the DNS server

would keep getting a weird IP-address (like 192.168 etc.) from the DHCP server. So we had to find

out what the problem was and therefore we used Wireshark:

Here is an enhanced version of that picture:

In the end, we found out it was because of Ferhat's laptop. He has Linux OS and did not know he had

internet sharing turned on. With Wireshark we found out that the DNS server was getting an IP

address from his Laptop via internet sharing. After we fixed the problem everything worked happily.

Thus, after the fix, the DNS server was getting an IP-address from the Pi’s DHCP server, hurray!

